X-Linked G6PD Deficiency Protects Hemizygous Males but Not Heterozygous Females against Severe Malaria

نویسندگان

  • Aldiouma Guindo
  • Rick M Fairhurst
  • Ogobara K Doumbo
  • Thomas E Wellems
  • Dapa A Diallo
چکیده

BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) is important in the control of oxidant stress in erythrocytes, the host cells for Plasmodium falciparum. Mutations in this enzyme produce X-linked deficiency states associated with protection against malaria, notably in Africa where the A- form of G6PD deficiency is widespread. Some reports have proposed that heterozygous females with mosaic populations of normal and deficient erythrocytes (due to random X chromosome inactivation) have malaria resistance similar to or greater than hemizygous males with populations of uniformly deficient erythrocytes. These proposals are paradoxical, and they are not consistent with currently hypothesized mechanisms of protection. METHODS AND FINDINGS We conducted large case-control studies of the A- form of G6PD deficiency in cases of severe or uncomplicated malaria among two ethnic populations of rural Mali, West Africa, where malaria is hyperendemic. Our results indicate that the uniform state of G6PD deficiency in hemizygous male children conferred significant protection against severe, life-threatening malaria, and that it may have likewise protected homozygous female children. No such protection was evident from the mosaic state of G6PD deficiency in heterozygous females. We also found no significant differences in the parasite densities of males and females with differences in G6PD status. Pooled odds ratios from meta-analysis of our data and data from a previous study confirmed highly significant protection against severe malaria in hemizygous males but not in heterozygous females. Among the different forms of severe malaria, protection was principally evident against cerebral malaria, the most frequent form of life-threatening malaria in these studies. CONCLUSIONS The A- form of G6PD deficiency in Africa is under strong natural selection from the preferential protection it provides to hemizygous males against life-threatening malaria. Little or no such protection is present among heterozygous females. Although these conclusions are consistent with data from at least one previous study, they have not heretofore been realized to our knowledge, and they therefore give fresh perspectives on malaria protection by G6PD deficiency as an X-linked trait.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis

Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency overlaps with malaria endemicity although it predisposes carriers to hemolysis. This fact supports the protection hypothesis against malaria. The aim of this systematic review is to assess the presence and the extent of protective association between G6PD deficiency and malaria. Thirteen databases were searched for papers reporting any G6PD al...

متن کامل

Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study

BACKGROUND The global prevalence of X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is thought to be a result of selection by malaria, but epidemiological studies have yielded confusing results. We investigated the relationships between G6PD deficiency and both malaria and non-malarial illnesses among children in Kenya. METHODS We did this study in Kilifi County, Kenya, where the...

متن کامل

Double heterozygosity for glucose-6-phosphate dehydrogenase deficiency.

Erythrocyte glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disorder (Browne, 1957). According to Gross, Hurwitz, and Marks (1958) males who are hemizygous for this disorder have low enzyme levels which vary from 0 to 20% of normal, and haemolysis occurs in association with exposure to certain drugs or illness. On the other hand, heterozygous females have intermedi...

متن کامل

African Glucose-6-Phosphate Dehydrogenase Alleles Associated with Protection from Severe Malaria in Heterozygous Females in Tanzania

X-linked Glucose-6-phosphate dehydrogenase (G6PD) A- deficiency is prevalent in sub-Saharan Africa populations, and has been associated with protection from severe malaria. Whether females and/or males are protected by G6PD deficiency is uncertain, due in part to G6PD and malaria phenotypic complexity and misclassification. Almost all large association studies have genotyped a limited number of...

متن کامل

YEARBOOK OF PHYSICAL ANTHROPOLOGY 36:153—178 (1993) G6PD Deficiency as Protection Against falciparum Malaria: An Epidemiologic Critique of Population and Experimental Studies

Several recent reviews in the medical literature maintain that only heterozygous G6PD deficient females are relatively protected against falciparum malaria. However, a number of population studies pro-vide compelling evidence that both the hemizygous G6PD deficient male and homozygous G6PD deficient female are also relatively protected against falciparum parasitization. An epidemiologic critiqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Medicine

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2007